
Quiz E25

Nuclear fusion

1. Two conditions for fusion to occur are high temperature and high density. What are the reasons for this?

	High temperature	High density
Α	To eject the electrons from the	To maximize the energy produced per
	atoms	reaction
В	To eject the electrons from the	To increase the probability of a collision
	atoms	between nuclei
С	To overcome the electrical	To maximize the energy produced per
	repulsion of the nuclei	reaction
D	To overcome the electrical	To increase the probability of a collision
	repulsion of the nuclei	between nuclei

- 2. Which of the following reactions is **not** a fusion reaction?
 - **A** ${}^{4}_{2}$ He+ ${}^{4}_{2}$ He $\rightarrow {}^{8}_{4}$ Be+ γ
 - **B** ${}^{15}_{8}$ **O** $\rightarrow {}^{15}_{7}$ **N** $+ {}^{0}_{1}\overline{e}^{+} + v$
 - $\mathbf{C}_{1}^{1}\mathbf{H} + {}_{1}^{1}\mathbf{H} \rightarrow {}_{1}^{2}\mathbf{H} + {}_{1}^{0}\overline{\mathbf{e}}^{+} + v$
 - **D** ${}_{1}^{1}\text{H} + {}_{7}^{15}\text{N} \rightarrow {}_{6}^{12}\text{C} + {}_{2}^{4}\text{He}$
- 3. What is a common characteristic of main sequence stars?
 - **A** High luminosity
 - **B** Fusion of hydrogen into helium
 - **C** High density
 - **D** Fusion of helium into carbon

4. Two stars, X and Y, have been marked on a Hertzsprung-Russel diagram.

- **C** 500
- **D** 250

IB Physics: K.A. Tsokos

- 5. Three statements are made about the instability region of the Hertzsprung-Russel diagram.
 - I It is an almost vertical narrow strip above the main sequence
 - II It consists of stars which are variable in luminosity
 - III All main sequence stars will go through this region at some time

Which statements are correct?

- A I and II
- **B** I and III
- ${\bm C}~{\tt II}~{\tt and}~{\tt III}$
- ${\bf D}\,$ I, II and III
- **6.** What is the main characteristic of a main sequence star that determines the evolution of the star beyond the main sequence?
 - A The surface temperature
 - B The core density
 - C The mass
 - **D** The radius
- 7. What is the parallax angle of a star?

A The angle at which the star subtends a distance equal to the radius of the Earth's orbit around the Sun.

B The angle at which the star subtends a distance equal to the diameter of the Earth's orbit around the Sun.

- **C** The angle at which the star subtends a distance equal to 1 parsec.
- **D** The angle at which the star subtends a distance equal to 1 light year.
- **8.** A star has 10³⁰ kg and may be assumed to be all hydrogen. The luminosity of the star is 10²⁶ W and fusion reactions produce 10⁻¹² J per reaction in the proton-proton chain. What is an estimate of the time it will take the star to fuse 10% of its hydrogen?
 - **A** 10¹³ s **B** 10¹⁵ s **C** 10¹⁷ s **D** 10¹⁹ s
- 9. What is the evolutionary path of a one solar mass main sequence star?
 - A Red giant \rightarrow Supernova \rightarrow White dwarf
 - $\mathbf{B} \ \operatorname{Red} \operatorname{supergiant} \rightarrow \operatorname{Supernova} \rightarrow \operatorname{Neutron} \operatorname{star}$
 - ${\bf C}\; {\sf Red}\; {\sf giant} \to {\sf Planetary}\; {\sf nebula} \to {\sf White}\; {\sf dwarf}\;$
 - **D** Red supergiant \rightarrow Planetary nebula \rightarrow Neutron star

- **10.** A white dwarf star, once formed, will
 - A cool down by radiating away thermal energy.
 - **B** cool down by conducting thermal energy into the surrounding space.
 - **C** maintain a constant temperature due to fusion reactions in the core.
 - **D** maintain a constant temperature due to fission reactions in the core.

IB Physics: K.A. Tsokos

Quiz E25		
Answers		
1	D	
2	В	
3	В	
4	D	
5	Α	
6	С	
7	Α	
8	С	
9	С	
10	Α	